

ASSESSMENT OF REGULATORY NEEDS FOR SIMPLE MANGANESE SUBSTANCES WHERE WE ARE Webinar February Series

Manganese REACH Administration

-UNDERSTANDING READACROSS GROUPINGS & DOSSIER STRENGTH/WEAKNESSES - LEGAL/REGULATORY ASPECTS ON THE ARN -HIGHLIGHT SOME ARN OUTCOMES -FINANCE/FINANCIAL MANAGEMENT

READACROSS GROUPINGS DOSSIER STRENGTH & WEAKNESSES IN THE NUTSHELL

Not in GROUPs

Manganese REACH Administration

Mn4+; insoluble; not bioavailable

Mn0; insoluble; partially bioavailable

Mn2+, Mn3+; partially soluble; partially bioavailable

Mn2+; sparingly H2O soluble; less bioavailable

FOCUS ON SPECIFIC TARGET ORGAN TOXICITY (STOT RE) REPRODUCTIVE TOXICITY – INCLUDING PRENATAL DEVELOPMENT

Present status of affairs: leading to possible work

Manganese REACH Administration

Mn:

STOT: 90 days chronic inhalation exposure study – No STOT however, significant data (epi studies) on alloys do support STOT. (tasks force required to examine components/purity/impurity/exposure levels of the alloys in these studies)

No data on Repro – data on salts was used as worse-case

Salts:

STOT: Already STOT RE 2 – MnSO4 has a harmonised Classification as STOT RE 2 hence this was read across. This needs to be defended as it could become RE 1.

Advocacy could be needed to ensure the authorities maintain the harmonise classification in the absence of any new data

Repro: Significant amount of data conclude - Not Repro

MnCO3 + MnO: No classification;

STOT: No chronic 90 days study- with a valency of Mn2+ - this could end up as a STOT RE 2 as per the salts or a 90 days study proposal put in place

Repro data not sufficient – used Salts data as worse-case – if this is acceptable then the STOT should apply. PND rabbit study exist on MnCO3 – No effects

MnO2:

STOT RE 2 (from literature): This needs to be defended as it could become RE 1. Mn/Neurotox experts required No repro studies - used Salts data as worse-case – position needs to be defended – Repro experts required

Some status of affairs leading to possible work

Manganese REACH Administration

Mn3O4: Multiple valency substance

No STOT (literature is weak/non-existent). - A 90 days study could be requested or proposed

Repro: No Repro study exist – used salts as worse-case – this could be challenged – in which case an EOGRTs could be the only way forward with neurotox endpoint. However, developmental OECD study exist – classified as cat 2 affecting the unborn child

MnS: Lower tonnage band No STOT classification ; No Repro classification

Such studies are not in the REACH information requirement for lower tonnage bands – legal arguments/experts will need to be on board.

UVCB's FeMn slags, SiMn slags and Sinter ore:

No STOT: 90 days and TK study exist to OECD and GLP guidelines

Repro data : No EOGRTs/ or Two Gen study exist. However, Cat 2 for developmental tox is application. – PND data on rats (no effects) and and PND study on rabbits = effects:

However, the issue seems to be on the presence of SiO2 in professional use so to resolve this issue we plan to:

Characterisation by particle sizes – massives vs powder. – if massives then there is no possibility of lung effect except for lung overload

Conduct some bioaccessibility studies on aveoli fluid to under any components leaching

XRD will show SiO2 as amorphous and not crystaline – characterisation of the slags

Understanding the exposure scenarios of our downstream user – cement/hardcore/ construction industry

Components/content	SiMn slag (%w/w)	FeMn slag (%w/w)	MnCl2/MnSO4 (Mn2+)
	(SOURCE A)	(TARGET SUBSTANCE)	(SOURCE B)
Silicon dioxide	ca. 31.8 (30-50)	ca. 31 (16-44)	0
Aluminium oxide	ca. 12.49 (7-30)	ca. 11 (0-24)	0
Barium oxide	ca. 1.18 (0-5)	ca. 1.5 (0-5)	0
Calcium oxide	ca. 26.02 (15-40)	ca. 24.5 (11-45)	0
Iron	0	≤0.04 (0-1.55)	0
Manganese	ca. 9.3 (0-13)	ca. 14.6 (7-31.6	
Manganese oxide	0	(a. 18.9 (10-44)	>95%w/w
Magnesium oxide	ca. 3.72 (3-15)	ca. 3.9 (1-12)	0
Silicon	ca. 4.7 (0-6.6)	0	0

Projected workload-In summary

Manganese REACH Administration

Mn: lit search and evaluation on STOT effects from alloys – Justify classification or lack of it and put in an EOGRT study testing proposal (ca. 1million euros)

Salts (MnCl2/MnSO4/Mn(NO3)2): Advocacy to maintain classification

MnCO3 and MnO: Engage Scientific tasks force to ensure STOT classification is not readacross or put in a 90 days chronic exposure testing proposal (ca. €300K)

MnO2: Engage Scientific tasks force to ensure STOT RE 2 classification is maintained + advocacy

Mn3O4: 90 days chronic exposure testing proposal (ca. €300K) + advocacy to use Repro study from salts

MnS: Legal justification for lack of regulatory need based on tonnage band

UVCB's FeMn slags, SiMn slags and Sinter ore: (ca. €100K) Characterisation by particle sizes – massives vs powder. Conduct some bioaccessibility studies on aveoli and stomach fluid XRD will show SiO2 as amorphous and not crystaline – characterisation of the slags

Understanding the exposure scenarios of our downstream user – cement/hardcore/ construction industry

To conclude

- Keep a keen eye on your REACH IT/ Monitor ECHA news
- Industry must work together CLH is not tonnage band specific
- Certain classifications can affect business and lead to restriction
- The first outcome of the ARN could be CCH this could lead to testing projected at ca. €1.7 – 2 million
- The main risk is a blanket STOT classification (all substances)
- The second risk is those substances already classified as STOT RE 2 to become STOT RE 1 – a higher category means the substances can enter the list of SVHC
- Data on Repro is strong but scientific argument to use available data across all substances is needed
- Some degree of advocacy is required to maintain the present self and harmonised classifications status

ALL dossiers will need to be updated accordingly – as the authorities draw conclusions based on data from our dossiers

THANK YOU! END OF SESSION 1

ARN POSSIBLE OUTCOMES SESSION 3

C&L status according to ARN vs MARA's

Manganese REACH Administration

Substance name 🗘	EC / List no	CAS no 🗘	Authority 🗘	Concern 🗘	Status 🗘	Follow-up 🗘	Date of	MARA's C&L
Manganese	231-105-1	7439-96-5	Sweden	STOT RE Toxic for reproduction	Under development	No suggestion yet		None
Manganese carbonate	209-942-9	598-62-9	Sweden	 STOT RE Toxic for reproduction 	Under development	No suggestion yet		None
Manganese dichloride	231-869-6	7773-01-5	Sweden	 STOT RE Toxic for reproduction 	Under development	No suggestion yet		STOT RE 2
Manganese dinitrate	233-828-8	10377-66-9	Sweden	 STOT RE Toxic for reproduction 	Under development	No suggestion yet		STOT RE 2
Manganese dioxide	215-202-6	1313-13-9	Sweden	STOT RE Toxic for reproduction	Under development	No suggestion yet		STOT RE 2
Manganese oxide	215-695-8	1344-43-0	Sweden	 STOT RE Toxic for reproduction 	Under development	No suggestion yet		None
Manganese sulphate	232-089-9	7785-87-7	Sweden	STOT RE Toxic for reproduction	Under development	No suggestion yet		STOT RE 2
Manganese sulphide	242-599-3	18820-29-6	Sweden	STOT REToxic for reproduction	Under development	No suggestion yet		None
Dimanganese trioxide Process related name: Manganese (III)	215-264-4	1317-34-6	Sweden	 STOT RE Toxic for reproduction 	Under development	No suggestion yet		Not in MARA's portfolio
oxide	215-266-5	1317-35-7	Sweden	STOT RE	Under development	No suggestion yet		Repro Cat 2 (Dev)
IUPAC name: manganese tetraoxide	210 200 3	1317 00 7	Stream	Toxic for reproduction	and development	Juggestion yet		

Different ARN conclusions exist – 1) Lanthanum

Manganese REACH Administration

ASSESSMENT OF REGULATORY NEEDS

2 **Conclusions and proposed actions**

The conclusions and actions proposed in the table below are based mainly on the REACH and CLP information available at the time of the assessment by ECHA. The conclusions are preliminary suggestions from a screening-level assessment done by ECHA with the aim to propose the next steps for further work (e.g., strengthening of the hazard conclusions, clarification of the uses and/or potential for exposure). The main source of information is the registration dossiers. Relevant public assessments may also be considered. When new information (e.g., on hazards through evaluation processes, or on uses) will become available, the document may be updated, and conclusions and actions revisited.

EC/List no Environmental Human Health Relevant use(s) & Suggested regulatory actions Hazard exposure potential Hazard Known or potential 209-599-5 Known or potential Mainly industrial uses First step: hazard hazard with limited potential CCH for EC 237-252-8, 233-238-0, 209-213-034-8 for reproductive for exposure and for aquatic toxicity 599-5, 215-200-5, 238-510-2, toxicity for all for all release. 233-237-5 215-200-5 Known or potential Two substances EC Potential next steps (if hazard 231-099-0 hazard 215-200-5 and 237confirmed after data generation): 233-237-5 for skin sensitisation 252-8 with high CLH for EC 233-237-5 exposure potential 233-238-0 from widespread Potential last action: Inconclusive hazard professional uses as Restriction for professional uses, OEL 237-252-8 for FD for all for industrial uses (under REACH or polishing powders, 238-510-2 non metal and metal OSH) (EC 215-200-5 only) 600-351-5 Justification: surface treatment are reported, EC 215-Harmonised classification as Repr 1B would 200-5 also lead to generic restriction of the substance(s) in consumer mixtures by professional and consumer uses in means of restriction entry 30. coatings and paints.

Table 1: Conclusions and proposed actions

Different ARN conclusions exist – 2) Chronium

Manganese REACH Administration

ASSESSMENT OF REGULATORY NEEDS

2 Conclusions and proposed actions

The conclusions and actions proposed in the table below are based mainly on the REACH and CLP information available at the time of the assessment by ECHA. The conclusions are preliminary suggestions from a screening-level assessment done by ECHA with the aim to propose the next steps for further work (e.g., strengthening of the hazard conclusions, clarification of the uses and/or potential for exposure). The main source of information is the registration dossiers. Relevant public assessments may also be considered. When new information (e.g., on hazards through evaluation processes, or on uses) will become available, the document may be updated, and conclusions and actions revisited.

Table 1: Conclusions	and proposed	actions
----------------------	--------------	---------

Subgroup name, EC number, substance name	Human Health Hazard	Environmental Hazard	Relevant use(s) & exposure potential	Suggested regulatory actions
All group members	Inconclusive hazard for reproductive toxicity for ED For all substances Known or potential hazard for skin sensitisation For all subgroup 1 substances No hazard or unlikely hazard for carcinogenicity, for mutagenicity, for STOT RE For all substances	Potential hazard for aquatic toxicity For all substances except EC 231-157-5, 234-361-2, 234-499- 3, 234-576-1, 235- 002-2, 235-790-8, and 915-035-5 No hazard or unlikely hazard for PBT/vPvB, for PMT For all substances Inconclusive hazard for ED For all substances	For most substances (except EC 234-361- 2, 234-499-3, 244- 256-3, 254-447-3 and 944-862-4) IND, PROF uses where potential for exposure is likely (metal and/or non-metal surface treatment, coatings and paints, thinners, paint removes, adhesive and sealants)	First step CCH for EC 233-038-3 Potential last action: Currently not possible to assess the regulatory needs <u>Justification:</u> Inconclusive hazard for reproductive toxicity and ED

Different ARN conclusions exist – 3) slags

Manganese REACH Administration

Other slag substances 266-968-3 Slags, copper smelting 273-732-3 Slags, phosphorus-manufg. 282-217-2 Slags, ferromolybdenum- manufg., silicothermic 310-060-2 Slags, elec. furnace smelting, iron silicate	Not assessed. For further information see Annex 1.	Widespread professional and consumer use in construction materials, fillers for earthwork, fertilisers, water treatment and abrasive agents. Industrial uses in construction materials and fillers for earthwork and as intermediate. Potential for exposure for workers and consumers and release to environment.	Currently no need for EU RRM <u>Justification:</u> Overall, no or unlikely hazard that would lead to concern for the reported uses.

• Best case

Manganese REACH Administration

Dr Doreen McGough; Executive Director of the Mn Consortium with over 20 years' work experience in the industry, 14 of which have been spent dealing solely with manganese.

Thank you! Any questions?